|||
2017-2018年厄尔尼诺一定发生:南极海冰四年周期
杨学祥,杨冬红
南极半岛海冰变化的四年周期
120oW ~60oW南极海冰,即东南太平洋的海冰,主周期为120个月,次周期分别为48、26.7和20个月。全南极海冰主周期为60个月,次周期为21个月。南印度洋范围(0oE ~120oE)和东南太平洋范围的南极海冰的变化主周期分别是80个月和120个月,但都有显著的48个月的次周期。这个周期与赤道中东太平洋的海温变化周期大致相同[13]。
为南极环大陆德雷克海峡海冰的气候开关效应
我们在2016年9月26日指出,厄尔尼诺事件的发生是北太平洋积累的热能向南太平洋输送的结果,潮汐南北震荡加快了南北太平洋的热能输送。德雷克海峡的海冰变化具有调控全球气候变化的机制,我们称之为南极环大陆德雷克海峡海冰的气候开关效应。
南极半岛的海冰减少使德雷克海峡水流通量增加,导致环南极大陆水流速度变快和南太平洋环流速度变慢,部分本应北上的水流转而进入德雷克海峡,使秘鲁寒流变弱(东太平洋南美沿海的海温降低),使东太平洋表面海水变暖,减弱沃克环流,使堆积在太平洋西部的暖水东流,形成厄尔尼诺事件。反之,“拉尼娜”事件出现。
图1. 全球气候的三个海冰启动开关示意图
2014年9月南极海冰结冰量创40年新高
2014-10-14 06:45:32 来源:凤凰科技
2014-10-14凤凰科技讯科学日报报道,近日消息称今年南极洲的海冰结冰程度创了新的记录,相比科学家们自20世纪70年代晚期开始进行的海冰结冰程度长期卫星记录相比,今年的海冰覆盖了更多南部海洋。
自20世纪70年代晚期以来,北极每年丢失了53900平方千米的冰;南极每年增加了18900平方千米的海冰。今年9月19日,自1979年以来南极洲的海冰结冰区域首次超过了2000万平方英里,根据国家冰雪数据中心(NSIDC)这样显示。这一基准的结冰程度持续保持了几天。1981年至2010年间平均最大的结冰范围为1872万平方千米。
今年单日最大结冰量发生在9月20日,据国家冰雪数据中心的数据显示。在这一天海冰覆盖面积为2014万平方千米。今年五天平均最大结冰量发生在9月22日,海冰覆盖了2011万平方千米(见表1)。
http://www.weather.com.cn/climate/2014/10/qhbhyw/2209601.shtml
2014年9月南极半岛海冰达到1979年以来最大值,阻止了2014年超级厄尔尼诺的发生,2015年超级厄尔尼诺能否发生,取决于2015年9月南极海冰最大值的异常程度,异常变小将导致强厄尔尼诺的发生。
http://blog.sciencenet.cn/blog-2277-891160.html
http://blog.sciencenet.cn/blog-2277-891293.html
2016年9月21日南极半岛海冰面积明显减少是十分罕见的特殊事件
2016年9月21日南极半岛海冰面积明显少于2015年9月24日,秘鲁寒流增强的趋势受到遏制。这是目前拉尼娜发展缓慢的主要原因。2016年9月21日南极半岛海冰面积也明显少于2016年8月18日。
2016年9月21日南极半岛海冰面积明显减少是十分罕见的特殊事件,与2014-2016年月亮赤纬角最小值导致的2014-2016年创纪录的高温记录密切相关,值得我们特别关注。
http://blog.sciencenet.cn/blog-2277-910209.html
2016年2月25日南极半岛海冰面积最小值非常显著,使秘鲁寒流减弱,对超级厄尔尼诺延续到2016年第一季度做出了贡献。
对比2015年9月24日和2016年2月25日南极半岛海冰面积最大面积和最小面积,我们可以明显看到南极半岛海冰面积大小变化对厄尔尼诺和拉尼娜的影响。
关注2016年10月南极半岛海冰面积变化对拉尼娜的影响。
http://blog.sciencenet.cn/blog-2277-1005138.html
有利于拉尼娜生成和发展的条件:
2月南极半岛海冰面积最小值异常变大;
9月南极半岛海冰面积最大值异常变大。
http://blog.sciencenet.cn/blog-2277-1005239.html
2017年2月13日海冰面积仅228.7万平方公里
目前的条件是:
其一、2016年9月21日南极半岛海冰面积明显减少是十分罕见的特殊事件,与2014-2016年月亮赤纬角最小值导致的2014-2016年创纪录的高温记录密切相关,值得我们特别关注。
其二、2017年2月13日海冰面积仅228.7万平方公里,已刷新最新历史纪录,之前1997年2月27日海冰面积达到历史低点,为229万平方公里。
2017-02-19据英国每日邮报报道,目前,美国卫星勘测数据显示,南极洲海冰缩小至历史最低纪录,2月13日海冰面积仅228.7万平方公里,这可能与多年以来人类活动导致气候转暖有关。
表1 1999-2016年南极海冰变化与厄尔尼诺事件
年 份 | 9月的平均程度 (百万平方公里) | 2月平均范围 (百万平方公里) | 气象事件 | |
1979–2000 mean | 18.7 | 2.9 |
|
|
1999/2000 | 19.0 | 2.8 |
| 拉尼娜 |
2000/2001 | 19.1 | 3.7 |
| 拉尼娜 |
2001/2002 | 18.4 | 2.9 |
| 厄尔尼诺 |
2002/2003 | 18.2 | 3.9 |
| 厄尔尼诺 |
2003/2004 | 18.6 | 3.6 |
| 厄尔尼诺 |
2004/2005 | 19.1 | 2.9 |
|
|
2005/2006 | 19.1 | 2.7 |
| 厄尔尼诺 |
2006/2007 | 19.4 | 2.9 |
| 拉尼娜 |
2007/2008 | 19.3 | 3.9 |
| 拉尼娜 |
2008/2009 | 18.5 | 2.9 |
| 厄尔尼诺 |
2009/2010 | 19.2 | 3.2 |
| 拉尼娜 |
2010/2011 | 19.2 | 2.5 |
| 拉尼娜 |
2011/2012 | 18.9 | 3.5 |
| 拉尼娜 |
2012/2013 | 19.44 |
|
|
|
2013/2014 | 19.50 |
|
|
|
2014/2015 | 20.11 最大值 |
|
|
|
2016/2017 | 最小值 | 最小值 |
| 拉夭折? |
http://blog.sina.com.cn/s/blog_bd64c19e0101ihif.html
http://weather.news.qq.com/a/20140109/012127.htm
http://roll.sohu.com/20140718/n402426913.shtml
http://blog.sciencenet.cn/blog-2277-864190.html
http://blog.sciencenet.cn/blog-2277-865043.html
美国国家雪冰数据中心(NSIDC)勘测数据显示,2月13日海冰面积仅228.7万平方公里,已刷新最新历史纪录,之前1997年2月27日海冰面积达到历史低点,为229万平方公里,南极洲卫星数据最早可追溯至1979年。
美国宇航局指出,南极海冰减少与松岛冰川大面积冰川分解有关,分解的冰川相当于美国曼哈顿大小。NSIDC主管马克-塞瑞兹(Mark Serreze)称,他将利用几天时间进行更多的测量,进一步证实南极洲真实的海冰面积。
http://mt.sohu.com/it/p/126627536_354970
http://tech.qq.com/a/20170218/010405.htm
2017年3月1日南极洲海域冰层面积达38年来最低水平:仅有81.8万平方米的海洋结成了冰。http://www.cnbeta.com/articles/science/589401.htm
日本研究机构:南极海冰面积创新低原因待查
发布时间:2017-03-24 10:13 来源:中国新闻网
中新网3月23日电据日媒报道,日本国立极地研究所本月23日宣布,覆盖南极洲的海冰面积本月1日约为215万平方公里,为1978年使用人造卫星观测以来最小面积。
据报道,该研究所极地海洋学副教授牛尾收辉就原因表示,“需要从海洋水温、洋流、风等各种角度来检证”。
报道称,这一时期的南极是夏季,气温上升,海冰面积为一年中最小。但2000年至2009年观测到的最小面积平均为303万平方公里,本月1日的数据显示减少至约七成。
该机构对宇宙航空研究开发机构(JAXA)水循环变动观测卫星“雫”收集的数据进行了分析。
另外,美国国家航空航天局(NASA)也宣布,南极洲的海冰面积本月初创最小纪录。据悉北冰洋的海冰7日达到今冬最大面积,但作为冬季面积峰值则创历史新低。
http://news.cyol.com/content/2017-03/24/content_15810766.htm
结论
2017年9月末南极海冰最大值不会太大,有利于厄尔尼诺的发生。
相关博文
地球自转准四年周期及其在厄尔尼诺中的作用
杨学祥1,2,杨冬红
(1.吉林大学地球探测科学与技术学院,长春130026; 2.中国科学院国家天文台,北京100012)
[基金项目]国家自然科学基金项目(批准号:49774228)部分成果。
摘 要:月亮近地潮和太阳近地潮有四年周期的叠加关系,与地球自转加速度四年周期变化一一对应。由于这个变化受到日月大潮的强烈干扰,所以潮汐强度表现为准两年震荡、准四年震荡和准六年震荡,并且叠加日有规律地递进变化。在地球近日点(1月3-4日)附近,月亮近地潮和日月大潮的叠加形成最强的特大潮汐,与自然灾害有很好的对应关系。
关键词:厄尔尼诺, 地球自转,准四年周期, 最强潮汐,月亮, 太阳,准两年周期.
1 地球自转的四年周期
从1955年以后,用近代仪器观测到,地球自转加速度约每四年就有一次突然的变化。平缓的变化可能是由于地幔与地核的角动量交换,但突然变化的原因现在还不清楚。根据美国华盛顿和理士满(Richmond)两地测得的地球转速季度平均值的变化,可用一条折线近似地表示,其转折点各在1957.79,1961.93和1965.61。在这些点上加速度的变化是急剧的,但速度是连续的。这个现象有无特别的物理意义,现在尚难断定。季节性的日常变化约为0.6毫秒,相当于±60×10-10,并且各年几乎相同。季节性的加速度约为±650×10-10/年。这个变化主要是由于风引起的,但潮汐也有影响[1]。
2 强潮汐的准两年周期和准四年周期
最近,我们在研究特大潮汐时,意外发现月亮近地潮和太阳近地潮有四年周期的叠加关系,与地球自转加速度四年周期变化一一对应。由于这个变化受到日月大潮的强烈干扰,所以潮汐强度表现为准两年震荡、准四年震荡和准六年震荡,并且叠加日有规律地递进变化。在地球近日点(1月3-4日)附近,月亮近地潮和日月大潮的叠加形成最强的特大潮汐。
从1951年到1977年,1月6日和8日的月亮近地潮与1月3-4日的太阳近地潮叠加每四年重复一次,有四年准周期。递进变化是有规律的。1957年、1961年和1965年都在1月17日(地球近日点附近)有月亮近地潮和日月大潮的叠加,形成最大潮汐形变,影响地球自转速度,对应准四年变化周期。这种情况一直延续到1977年才由1月17日变为1月16日。而且,同日的日月大潮消失。四年周期中,有时三年情况重复,有时两年情况重复,四年中有一年为最强潮汐,位置不断变动,最强潮汐年的时间间隔为4-7年不等(见表1)。预计在月亮近地潮、日月大潮与1月3-4日的太阳近地潮当日叠加将形成最强潮汐,造成全球最严重的自然灾害。月亮近地潮和太阳近地潮准四年周期的叠加关系与全球灾害有很好的对应性,这为强潮汐导致全球灾害提供了新的证据[2-8]。
计算结果表明,月亮在赤道时产生的半日潮使气圈、水圈和液核分别有54181864、43275和3103km3的体积绕固体地球向西运动,形成赤道高空风、西向海潮和液核表层西向漂移。由于地形的阻挡,形成大气、海洋和液核的涡旋、湍流和异常大潮以及冷暖海水的上下和东西向振荡与混合。岩石圈和下地幔分别有2754和10599km3的体积胀缩,是其中熔融部分流动、上涌和喷发的动力。太阳相对地球在南北回归线之间的摆动,使流体相对固体南北振荡与混合。地球在春分和秋分扁率变为最大,形成赤道大潮,两极高纬地区分别有6605998、5251和368km3体积的大气、海水和液核流体通过临界纬度(35o)流向赤道,并在科氏力和西向引潮力作用下加速向西漂移,使各圈层自转速度变小,差异旋转速度增大,高纬地区排气排液活动强烈,其中大气对流层日长增加最为显著,为97秒,是岩石圈日长增加值(0.00027秒)的359259倍。地磁活动在两分点达到最大值是其证据。这是两极冷水入侵赤道并使大洋西部暖水变冷的主要原因[8]。
表1 月亮近地潮和太阳近地潮准四年周期叠加
近地点 潮汐强度 厄尔尼诺年(E)
年 月 日 时 农历 日食 月食 弱w 强s 拉尼那年(L)
1951 1 6 20.8 29 ss E
1952 126 20.1 30 w E
1953 117 7.0 3 30 s E
1954 110 17.8 6 5 19 w L
1955 1 6 16.8 13 ss L
1956 126 20.8 14 w L
1957 117 6.3 17 s E
1958 1 9 7.7 20 w E
1959 1 6 4.6 27 sw 大旱灾
1960 126 17.8 28 w 大旱灾
1961 117 7.0 1 s 大旱灾
1962 1 8 21.9 3 ss 大旱灾
1963 1 4 16.2 9 25 w E
1964 126 9.3 12 14 w E-L
1965 117 8.5 15 s L-E
1966 1 8 18.3 17 ss E
1967 1 1 17.8 21 w L
1968 125 7.6 26 w L
1969 117 8.1 29* s E
1970 1 8 17.9 1 ss E-L
1971 1 28 18.5 2 w L
1972 122 13.6 7 16 30 w E
1973 117 4.8 14 4 s E
1974 1 8 19.3 16 ss L
1975 1 28 17.3 17 w L
1976 1 20 21.4 20 w L-E
1977 1 16 18.2 27 sw E
1978 1 8 20.2 29* 9 24 ss 大旱灾
地球在夏至和冬至扁率变小,低纬排液排气强烈,形成赤道低潮,赤道海平面下降,暖水暖风流向两极使地球自转变快,它们在科氏力作用下向东漂移,加强赤道逆流,减弱赤道信风。特别是从秋分到冬至,日地距离变为最小,太阳引潮力变为最大,半日潮产生的强烈振荡高值区由赤道向南北回归线偏移,形成低纬大洋南升西移北降东移的顺时针昼环流和南降东移北升西移的逆时针夜环流,昼夜反向环流和最大幅度南北振荡加强了冷暖水的混合。在南美厄瓜多尔和秘鲁沿岸,由于暖水从北边涌入,每年圣诞节前后海水都会出现季节性增暖现象。月球在赤道南北的摆动(摆动幅度由月亮赤纬角决定,其变化周期为18.6年)加强这一效应,形成混合冷暖海水的强烈振荡,使太平洋西部海水由暖变冷,使太平洋东部海水由冷变暖。行星冲日、大潮和近地潮的叠加形成最大值效应——厄尔尼诺事件。从1822年到1998年,有31年无月食。其前后一年内不发生厄尔尼诺事件的仅有4年,其前后2年内都发生了厄尔尼诺。无月食年是地球潮汐形变的极小值年,是预测厄尔尼诺的重要依据。2002年无月食,所以,2001~2004年内必发生厄尔尼诺事件[8]。
信风使冷暖洋流分别集中在赤道大洋的东西两侧。太平洋与大西洋的区别在于有集中的火山地震带和大于90o的两侧经度差,形成太平洋东部与西部的潮汐高低潮的反相位。因此,1950px的强潮汐高差在东西太平洋的反向振荡可抵消西太平洋暖水海面高差(1000px),强迫冷水上翻和暖水东向运动,强烈的振荡混合作用降低东西海水温差,加强赤道逆流,形成厄尔尼诺。我们称之为“强潮汐海温均衡效应”。东太平洋海底火山在强潮汐作用下强烈排液排气,是降低东太平洋气压、形成厄尔尼诺的激发因素[8]。
3 海温和海冰变化的准四年周期
当南极洲的温度变冷时,存在很多海冰的德雷克通道处于半封闭状态,阻塞环南极大陆海流,加快南太平洋环流,并从向极方向连接南极洲热输送,因而使南极洲变暖;当南极洲的温度变暖时,存在很少海冰的德雷克通道处于开放状态,打通环南极大陆海流,减慢南太平洋环流,并从向极方向隔离南极洲热输送,因而使南极洲变冷。非洲海冰开关,澳大利亚海冰开关,以及德雷克海峡海冰开关控制了环南极大陆海流,并从向极方向隔离或连接向南极洲的热输送,因而增加或减少在非洲、澳大利亚和南美洲西部的海洋寒流流量。因此,南太平洋海温的增加和减少在环南极三个“海冰开关”的控制下不断交替发生,与南太平洋环流速度减慢与增加相对应[9-12]。
120oW ~60oW南极海冰,即东南太平洋的海冰,主周期为120个月,次周期分别为48、26.7和20个月。全南极海冰主周期为60个月,次周期为21个月。南印度洋范围(0oE ~120oE)和东南太平洋范围的南极海冰的变化主周期分别是80个月和120个月,但都有显著的48个月的次周期。这个周期与赤道中东太平洋的海温变化周期大致相同[13]。因为环南极海冰变化和太平洋海温都具有准两年周期[13, 14],所以厄尔尼诺热事件和拉尼娜冷事件应该与海冰变化引起的赤道海洋表面温度两年周期变化一一对应。
4 厄尔尼诺的变化特征
小波分析的结果表明,厄尔尼诺─南方涛动(ENSO)循环的周期从20世纪五十年代以来经历了显著的变化。其主周期在六十年代中期由六年左右突变为二年左右,随后逐渐增为4年左右。七十年代中期之后,ENSO循环呈现准5年振荡,同时也含有一个明显的准两年振荡分量[15]。我们的研究表明,强潮汐、地震、火山和厄尔尼诺有很好的对应性和因果关系,大气、海洋和岩石圈的相互作用是厄尔尼诺产生的原因。
http://blog.sciencenet.cn/blog-2277-300019.html
参考文献
1. 傅承义。地球十讲。北京:科学出版社,1976。55-57
2. 杨学祥. 大气、海洋与固体地球的能量交换. 世界地质, 2004, 23(1): 28-34
3. 杨学祥. 厄尔尼诺事件预测.科学技术与工程.2003,3(2);155.
4. 杨学祥,陈震,陈殿友 等. 厄尔尼诺事件与强潮汐的对应关系. 吉林大学学报(地球科学版),2003, 33(1):87-91.
5. 杨学祥, 宋冬林,陈震. 灾害预报与鸡西煤矿瓦斯爆炸事件. 西北地震学报, 2003,25(1): 93.
6. 杨学祥. 海底扩张的潮汐模式. 大地测量与地球动力学. 2003,23(2): 77-80.
7. 杨学祥. 地球流体的差异旋转与气候变化.自然杂志. 2002, 24(2): 87-91
8. 杨学祥. 2001年发生厄尔尼诺事件的天文条件. 地球物理学报.2002,45(增刊):56-61
9. Yang Xuexiang, Chen Zhen,ChenDianyuo, Qiao Qiyuan.The Relation between Tectonic Movement andClimatic Change. J. Geosci. Res. NE Asia, 2003, 6 (1):82~88.
10. 杨学祥.青藏高原隆升的潮汐-均衡模式. 世界地质,2003, 22(2): 119-123
11. 杨学祥.2003,海平面振荡产生的地壳跷跷板运动. 地学前缘. 10(3): 190.
12. 杨学祥.2003, 太平洋环流速度减慢的原因. 世界地质,22(4): 380-384.
13. 周秀骥,陆龙骅主编.南极与全球气候环境相互作用和影响的研究[M]. 北京: 气象出版社,1996. 2, 12, 44, 133, 380, 381~392.
14. 王在文,李晓东. 太平洋海温演变的时空结构[J]. 北京大学学报(自然科学版),2002, 38(2): 350~357.
15. WANGBin, WANG Yan. Development of El Ninos during 1971-1992[J]. Transactions ofOceanology and Limnology. 1994, (2): 26-40.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-5 21:27
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社