|||
2016-2017年拉尼娜状态减弱是南极半岛海冰异常减少惹的祸
杨学祥,杨冬红
2016年9月22日南极半岛海冰与拉尼娜指数的对应关系
中国气象局2017-01-06 09:05:18 报道,来自国家气候中心的最新监测显示,最近7周的尼诺指数有6个星期在-0.5℃之上,最近2周均为-0.3℃。依据2016年4月中国气象局《厄尔尼诺/拉尼娜事件监测业务规定》的新指标,此次冷水过程极有可能不能形成一次拉尼娜事件。而拉尼娜的此番状态也让“这个冬天不太冷”的声音有了合理的解释。
我们在2017年1月6日早报中指出,2017年1月5日12时拉尼娜指数为-0.313,比1月5日00时的-0.304减速0.009,减速变慢,进入新的下降区间,在22日达到谷值-0.769,25日达到峰值-0.402。24-25日寒潮打断上升趋势,进入下降区间,在29日前形成新的谷值(2016年12月25日18时拉尼娜指数为-0.476),而后继续上升,26日00时进入上升区间,31日12时增速变慢,已经进入比上次更高的峰值(-0.086),31日18 时下降为-0.090,1月5日12时下降为-0.313。本次下降幅度关系到拉尼娜是否结束,预计1月6日前后进入谷值,拉尼娜已接近结束。
导致拉尼娜夭折的关键因素为2016年9月22日南极半岛海冰面积最大值的异常减少和2016年最热新纪录(见相关报道)。
南极半岛海冰:海冰面积最大值导致秘鲁寒流增强,有利于拉尼娜发展,海冰面积最小值导致秘鲁寒流减弱,不利于拉尼娜发展。
受2016年9月22日南极半岛海冰最大面积异常减少的影响,拉尼娜指数也异常增加,从-1跳升到0.4附近,形成最大的数据间断(见图1)。
图1 2016年7月25日至10月22日拉尼娜指数变化
http://blog.sciencenet.cn/blog-2277-1025728.html
9月1日日食在赤道,加强拉尼娜的发展,使其持续到12日。2016年9月1日南极半岛海冰面积逐渐增加,按通常规律,在22日达到最大值。事实正好相反,22日南极半岛海冰面积没有达到最大值,反而异常减少。受2016年9月22日南极半岛海冰最大面积异常减少的影响,拉尼娜指数也异常增加,从-1跳升到0.4附近(见图1-3)。
图2 2016年9月1日南极半岛海冰面积达到最大值
图3 2016年9月22日南极半岛海冰面积没有达到最大值反而出现异常减少,可与2015年9月21日南极半岛海冰面积对比(见图4)
图4 2015年9月21日南极半岛海冰面积最大值异常变大减弱厄尔尼诺强度
图5 2016年12月1日南极半岛海冰面积继续保持异常变小,减弱秘鲁寒流,减弱拉尼娜
图6 2014年12月1日南极半岛海冰面积,与2016年12月1日对比
从2016年9月22日到12月,南极半岛海冰面积一直低于常年,这是拉尼娜状态在2016年10月以后逐渐减弱的主要原因。
南极海冰的气候开关作用
在短周期的气候变化中,德雷克海峡中的海冰进退控制气候变化的一个可能模式是:南极半岛海冰增多使西风漂流在德雷克海峡受阻,导致环南极大陆水流速度变慢和南太平洋环流速度变快,部分受阻水流北上,加强秘鲁寒流,使东太平洋表面海水变冷,加强沃克环流及增强赤道太平洋热流与南极环流的热交换,增温的南极环流使南极半岛的海水减少;南极半岛的海冰减少使德雷克海峡水流通量增加,导致环南极大陆水流速度变快和南太平洋环流速度变慢,使部分本应北上的水流转而进入德雷克海峡,造成秘鲁海流变弱和东太平洋表面海水变暖,减弱沃克环流;结果使堆积在太平洋西部的暖水东流,减弱赤道太平洋热流与南极环流的热交换,降温的南极环流使南极半岛海冰增加。这就是德雷克海峡的海冰变化调控全球气候变化的机制,称之为南极环大陆海冰的气候开关效应(图6)。
当南极洲的温度变冷时,存在很多海冰的德雷克通道处于封闭状态,阻塞环南极大陆的海流,加快南太平洋环流,并从向极方向连接南极洲热输送,从而使南极洲变暖;当南极洲的温度变暖时,存很少海冰的德雷克通道处于开放状态,打通环南极大陆海流,减慢南太平洋环流,并从向极方向隔离南极洲热输送,因而使南极洲变冷。如图6所示,非洲海冰开关I,澳大利亚海冰开关II和德雷克海峡开关III控制了环南极大陆海流,并从向极方向隔离或连接向南极洲的热输送,因而增加或减少在非洲、澳大利亚和南美洲西部的海洋寒流流量。因此,南太平洋海温的增加和减少在环南极三个“海冰开关”的控制下不断交替发生,与南太平洋环流速度减慢与增加相对应。
图7 全球气候的三个海冰启动开关示意图
南极海冰季节性变化幅度较大.海冰净冰面积在2月最小,为2.3×106 km2,在9月最大,为15.4×106 km2,最大值约是最小值的6.5倍。南太平洋低纬度的海温,历年在3月附近为最暖,9月附近为最冷。日长在1月份比在7月份要长,即1月的地球自转速度比7月减慢。在南、北半球±10o的低纬度地区,自东而西的太平洋赤道洋流在2月最大流速为51 cm/s,8月最大流速大于77 cm/s。即8月赤道洋流流速要明显地大于2月。
南半球冬季冰冻线使非洲、澳大利亚和南美洲与南极洲的表面水流宽度分别缩小到原来的1/3、1/2和1/8。这种情况在平面地图上是难以觉察到的。南极半岛的海冰面积在2月最小,扩大了德雷克海峡海水通道,使南半球西风漂流速度加快,使太平洋外循环加快,内循环减慢,减弱秘鲁寒流,有利于厄尔尼诺事件的形成,对应赤道太平洋3月海水最暖,流速降低;南极半岛的海冰面积在9月最大,缩小了德雷克海峡海水通道,使南半球西风漂流速度减慢,增强秘鲁寒流,有利于拉尼娜事件的形成,对应赤道太平洋9月最冷,流速增大,使太平洋外循环减慢,内循环加快。
德雷克海峡的海冰大小控制了太平洋的内循环和外循环,控制了太平洋热能的热输出。检测德雷克海峡海冰变化可发现厄尔尼诺现象发生的前兆:南太平洋外循环加快内循环减慢有利于厄尔尼诺事件的形成;外循环减慢内循环加快有利于拉尼娜事件的形成。
厄尔尼诺事件的发生是北太平洋积累的热能向南太平洋输送的结果,潮汐南北震荡加快了南北太平洋的热能输送。德雷克海峡的海冰变化具有调控全球气候变化的机制,我们称之为南极环大陆德雷克海峡海冰的气候开关效应。
南极半岛的海冰减少使德雷克海峡水流通量增加,导致环南极大陆水流速度变快和南太平洋环流速度变慢,部分本应北上的水流转而进入德雷克海峡,使秘鲁寒流变弱(东太平洋南美沿海的海温降低),使东太平洋表面海水变暖,减弱沃克环流,使堆积在太平洋西部的暖水东流,形成厄尔尼诺事件。反之,“拉尼娜”事件出现。
我们在2016年10月3日指出,南半球变暖导致的2016年9月22日南极半岛海冰面积最大值异常变小,减弱了秘鲁寒流的强度,使拉尼娜发生的可能性和发生的强度受到威胁。
http://blog.sciencenet.cn/blog-2277-1006483.html
这一推断得到实践的证实。
参考文献
1. Li Guoqing. 27.3-day and13.6-dayatmospheric tide and lunar forcing on atmospheric circulation [J]. Adv.Atmos.Sci. 2005, 22: 359-374.
2. 杨冬红,杨学祥.全球变暖减速与郭增建的“海震调温假说”.地球物理学进展.2008, Vol. 23 (6): 1813~1818。YANG Dong-hong, YANG Xue-xiang. The hypothesis of the ocesnic earthquakes adjusting climate slowdown of global warming. Progress in Geophysics. 2008, 23 (6): 1813~1818.
3. 杨学祥,杨冬红。2014年1-2月潮汐组合与雾霾对应的检验。2014天灾预测学术研讨会议论文集。2014,224-237,万方数据库。
4. 杨冬红, 杨学祥.北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2): 610-615.YANG Dong-hong, YANG Xue-xiang. Study on the relation between ice sheets melting and low temperature in Northern Hemisphere. Progress in Geophysics. 2014, 29 (1): 610~615.
5. 杨冬红,杨德彬。日食诱发厄尔尼诺现象的热-动力机制。世界地质。2010,29(4):652-657.Yang D H, Yang D B. Thermal dynamic mechanism of El Nino induced by solar eclipse. Global Geology (in Chinese), 2010, 29 (4): 652-657.
6. 杨学祥,杨冬红。2014-2016年月亮赤纬角最小值时期雾霾进入高发期。2013天灾预测总结研讨学术会议论文集。2013,万方数据库。
7. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011,54(4):926-934. Yang D H, Yang D B, Yang X X, The influence of tides and earthquakes in global climate changes. Chinese Journal of geophysics (in Chinese), 2011, 54(4): 926-934
8. 杨学祥,杨冬红。2013年中国雾霾高发的气象原因初探。科学家. 2014, (3): 90-91.YANG Xue-xiang, YANG Dong-hong. Meteorological Analysis of Reasons Causing China's Frequent Smog Weather in 2013. Technology and life. 2014, (3): 90-91.
9. 杨冬红,杨学祥. 全球气候变化的成因初探. 地球物理学进展. 2013, 28(4): 1666-1677.Yang X X, Chen D Y. Study on cause of formation in Earth’s climatic changes. Progress in Geophysics (in Chinese), 2013, 28(4): 1666-1677.
10. 杨冬红, 杨学祥. 澳大利亚夏季大雪与南极海冰三个气候开关. 地球物理学进展, 2007, 22(5): 1680~1685YANG D H, YANG X X. Australia snow in summer and three ice regulators for El Nino events. Progress in Geophysics (in Chinese), 2007, 22(5): 1680~1685
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-13 18:21
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社