# 客观世界统一的基本特性、运动规律(7)

客观世界统一的基本特性、运动规律(7)

((6))

(3)6维时空矢量

=偏分(4)[1线矢]叉乘p(4)[1线矢]

=m0{(v(4)j/r(4)0-v(4)0 /r(4)j)[基矢0j]

+(v(4)l/r(4)k-v(4)k /r(4)l)[基矢kl]

,jkl=123循环求和}/(1-(v(3)/(c(光传)a*(声传))^2)^(1/2)

量纲： [M]/[T],

6维时空力矢量：

f(6)自旋[3线矢](m0=0)

=m0{v(4)k(v(4)j/r(4)0-v(4)0 /r(4)j)[基矢0jk]

+v(4)l(v(4)j/r(4)0-v(4)0 /r(4)j)[基矢0lj]

+v(4)0(v(4)l/r(4)k-v(4)k /r(4)l)[基矢0kl]

+v(4)j(v(4)l/r(4)k-v(4)k /r(4)l)[基矢jkl]

,jkl=123循环求和}/(1-(v(3)/(c(光传)a*(声传))^2)^(1/2)

量纲： [M] /[T],

f自旋(6)[3线矢]=f运动(3)[1线矢]+ f离心(3)[1线矢]

量纲： [M][L]/[T]^2,

带电粒子还有正、负电荷，就还有，

q1q2间的电磁势：

s(4q1q2)[1线矢]=q1[1线矢]/r(4q1q2)

=q1{ [基矢j],j=03求和}

/{r(4q1q2)a^2[基矢j],a=03求和}^(1/2)

q1q2间的电磁场强度:

=q2(4)[1线矢]叉乘s(4)[1线矢]

=q2{((4)Ak/rl-(4)Al/rk)[kl基矢]

+((4)Aj/r0-(4)A0/rj)[0j基矢],jkl=123循环求和}

=q2q1{((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[kl基矢]

+((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0j基矢]

,jkl=123循环求和}

=q2q1{((4)(r2/(ra^2,a=03求和)^(3/2))/r3

-(4)(r3/(ra^2,a=03求和)^(3/2))/r2)[23基矢]

+((4)(r3/(ra^2,a=03求和)^(3/2))/r1

-(4)(r1/(ra^2,a=03求和)^(3/2))/r3)[31基矢]

+((4)(r1/(ra^2,a=03求和)^(3/2))/r2

-(4)(r2/(ra^2,a=03求和)^(3/2))/r2)[12基矢]

+ ((4)(r1/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/r1)[01基矢]

+(4)(r2/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/r2)[02基矢]

+(4)(r3/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/r3)[03基矢]

=H(3)[1线矢]+icE(3)[1线矢],

H(3)的量纲是：[Q]^2[L]^(-2) =[M][L][T]^(-1)

E(3)的量纲是：[Q]^2[L]^(-3)=[M][T]^(-2)

H(3)=ic E(3)量纲，

4维时空电磁力[1-线矢]=FEH(4)[1-线矢]

=v(4)[1-线矢]点乘电磁场强度(6)[2线矢]

=q2q1{vk ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[l基矢]

+vl((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[k基矢]

+v0((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[j基矢]

+vj((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0基矢]

,jkl=123循环求和

=v(4)[1-线矢]叉乘电磁场强度(6)[2线矢]

=q2q1{v0 ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[0kl基矢]

+vj((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[jkl基矢]

+vk((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0jk基矢]

+vl((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0jl基矢]

,jkl=123循环求和

=v(3)[1-线矢]叉乘(H(3)[1线矢]+icE(3)[1线矢])

=磁力[1线矢]+电力[1线矢]量纲： [M][L]/[T]^2,

(4维时空的叉乘与点乘，彼此正交；所产生3维空间的磁力与电力，彼此正交，这实际表明：4维时空相对论电磁学与3维空间经典电磁学，的相互关系。)

q2 q1，互为正、负，则为吸力，同为正、负，则为斥力，运动方程都有不同能级，带电粒子在不同能级的跃迁，均可辐射或吸收相应的光子。

电磁力的量纲是:[Q]^2[L]^(-2)=[M][L][T]^(-2)

q的量纲：[Q]=[M]^(1/2)[L]^(3/2)[T]^(-1)

电荷q的质量m=q^2/(r(3)v(3)^2)(3维空间质量)

=q^2/(r(4)v(4)^2)(4维时空运动质量)

电荷q的动量m v(3)=q^2/(r(3)v(3))(3维空间)

m v(4)=q^2/(r(4)v(4))(4维时空)

电荷q的动能m v(3) ^2/2=q^2/(2r(3))(3维空间)

m v(4) ^2/2=q^2/(2r(4))(4维时空)

(未完待续)

http://blog.sciencenet.cn/blog-226-1203165.html

## 全部精选博文导读

GMT+8, 2019-12-6 06:32