时空可变系多线矢世界分享 http://blog.sciencenet.cn/u/可变系时空多线矢主人 演绎矢算研究高速运动且有相互作用的问题所不可缺少!

博文

客观世界统一的基本特性、运动规律(7)

已有 164 次阅读 2019-10-23 20:10 |个人分类:物理|系统分类:论文交流

         客观世界统一的基本特性、运动规律(7)

 ((6))

(3)6维时空矢量

自旋s(6) [2线矢]是动量p(4)[1线矢]的旋度(6)

=偏分(4)[1线矢]叉乘p(4)[1线矢]

=m0{(v(4)j/r(4)0-v(4)0 /r(4)j)[基矢0j]

    +(v(4)l/r(4)k-v(4)k /r(4)l)[基矢kl]

      ,jkl=123循环求和}/(1-(v(3)/(c(光传)a*(声传))^2)^(1/2)

    量纲: [M]/[T],

注意:p(4)=m0v(4)/(1-(v(3)/(c(光传)a*(声传))^2)^(1/2)

6维时空力矢量:

f(6)自旋[3线矢](m0=0)

=m0{v(4)k(v(4)j/r(4)0-v(4)0 /r(4)j)[基矢0jk]

     +v(4)l(v(4)j/r(4)0-v(4)0 /r(4)j)[基矢0lj]

+v(4)0(v(4)l/r(4)k-v(4)k /r(4)l)[基矢0kl]

+v(4)j(v(4)l/r(4)k-v(4)k /r(4)l)[基矢jkl]

,jkl=123循环求和}/(1-(v(3)/(c(光传)a*(声传))^2)^(1/2)

      量纲: [M] /[T],

f自旋(6)[3线矢]=f运动(3)[1线矢]+ f离心(3)[1线矢]

      量纲: [M][L]/[T]^2,

    带电粒子还有正、负电荷,就还有,

q1q2间的电磁势:

s(4q1q2)[1线矢]=q1[1线矢]/r(4q1q2)

 =q1{ [基矢j],j=03求和}

/{r(4q1q2)a^2[基矢j],a=03求和}^(1/2)

q1q2间的电磁场强度:

电磁场强度(6)[2线矢]=q2s(4)[1线矢]的旋度

=q2(4)[1线矢]叉乘s(4)[1线矢]

=q2{((4)Ak/rl-(4)Al/rk)[kl基矢]

   +((4)Aj/r0-(4)A0/rj)[0j基矢],jkl=123循环求和}

=q2q1{((4)(rk/(ra^2,a=03求和)^(3/2))/rl

        -(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[kl基矢]

       +((4)(rj/(ra^2,a=03求和)^(3/2))/r0

       -(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0j基矢]

,jkl=123循环求和}

=q2q1{((4)(r2/(ra^2,a=03求和)^(3/2))/r3

       -(4)(r3/(ra^2,a=03求和)^(3/2))/r2)[23基矢]

       +((4)(r3/(ra^2,a=03求和)^(3/2))/r1

      -(4)(r1/(ra^2,a=03求和)^(3/2))/r3)[31基矢]

    +((4)(r1/(ra^2,a=03求和)^(3/2))/r2

     -(4)(r2/(ra^2,a=03求和)^(3/2))/r2)[12基矢]

      + ((4)(r1/(ra^2,a=03求和)^(3/2))/r0

    -(4)(r0/(ra^2,a=03求和)^(3/2))/r1)[01基矢]

     +(4)(r2/(ra^2,a=03求和)^(3/2))/r0

    -(4)(r0/(ra^2,a=03求和)^(3/2))/r2)[02基矢]

    +(4)(r3/(ra^2,a=03求和)^(3/2))/r0

   -(4)(r0/(ra^2,a=03求和)^(3/2))/r3)[03基矢]

=H(3)[1线矢]+icE(3)[1线矢],

H(3)的量纲是:[Q]^2[L]^(-2) =[M][L][T]^(-1)

E(3)的量纲是:[Q]^2[L]^(-3)=[M][T]^(-2)

H(3)=ic E(3)量纲,

4维时空电磁力[1-线矢]=FEH(4)[1-线矢]

=v(4)[1-线矢]点乘电磁场强度(6)[2线矢]

=q2q1{vk ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

       -(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[l基矢]

     +vl((4)(rk/(ra^2,a=03求和)^(3/2))/rl

      -(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[k基矢]

       +v0((4)(rj/(ra^2,a=03求和)^(3/2))/r0

      -(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[j基矢]

       +vj((4)(rj/(ra^2,a=03求和)^(3/2))/r0

     -(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0基矢]

,jkl=123循环求和

也可表达为:

=v(4)[1-线矢]叉乘电磁场强度(6)[2线矢]

=q2q1{v0 ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

       -(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[0kl基矢]

     +vj((4)(rk/(ra^2,a=03求和)^(3/2))/rl

      -(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[jkl基矢]

       +vk((4)(rj/(ra^2,a=03求和)^(3/2))/r0

      -(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0jk基矢]

       +vl((4)(rj/(ra^2,a=03求和)^(3/2))/r0

      -(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0jl基矢]

,jkl=123循环求和

=v(3)[1-线矢]叉乘(H(3)[1线矢]+icE(3)[1线矢])

=磁力[1线矢]+电力[1线矢]量纲: [M][L]/[T]^2,

 

    (4维时空的叉乘与点乘,彼此正交;所产生3维空间的磁力与电力,彼此正交,这实际表明:4维时空相对论电磁学与3维空间经典电磁学,的相互关系。)

      q2 q1,互为正、负,则为吸力,同为正、负,则为斥力,运动方程都有不同能级,带电粒子在不同能级的跃迁,均可辐射或吸收相应的光子。

    电磁力的量纲是:[Q]^2[L]^(-2)=[M][L][T]^(-2)

q的量纲:[Q]=[M]^(1/2)[L]^(3/2)[T]^(-1)

       电荷q的质量m=q^2/(r(3)v(3)^2)(3维空间质量)

                           =q^2/(r(4)v(4)^2)(4维时空运动质量)

    电荷q的动量m v(3)=q^2/(r(3)v(3))(3维空间)

                      m v(4)=q^2/(r(4)v(4))(4维时空)

    电荷q的动能m v(3) ^2/2=q^2/(2r(3))(3维空间)

                      m v(4) ^2/2=q^2/(2r(4))(4维时空)

能量的量纲:[M][L]^2[T]^(-2)

(未完待续)




http://blog.sciencenet.cn/blog-226-1203165.html

上一篇:点击乌镇 洞见未来——从第六届互联网大会看智能互联新趋势
下一篇:哈! 激光干涉引力波天文台(LIGO)又闹大笑话

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2019-12-6 06:32

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部