||
杨振宁说过:“理论物理的工作好多是做无用功,在一个不正确的假定下猜来猜去,文章一大堆,结果全是错的。”
光的本质问题:
根据暗物质正反粒子偶极子理论,正反粒子偶极子具有一定质量,星系牵引一定范围内的正反粒子偶极子运动,太阳系牵引一定范围内的正反粒子偶极子运动,地球牵引一定范围内的正反粒子偶极子运动。在一定范围内,正反粒子偶极子随着地球运动,超过一定的范围后,正反粒子偶极子随着地球速度就存在了一定的速度梯度。再超过一定范围,正反粒子偶极子就不随着地球运动。迈克尔逊-莫雷实验均处于地球全速牵引正反粒子偶极子的范围内,因此观察到的光在各个方向上的传播速度是一样的。
预测与验证:
① 在空中进行类似试验,人造卫星的高度或空间站的高度已经超过了正反粒子偶极子的牵引范围,因此会出现预期的相对运动。
② 在高铁或飞机上,高铁或飞机无法牵引正反粒子偶极子,因此会出现预期的相对运动。
根据暗物质正反粒子偶极子理论,太阳系、银河系均分别在一定范围内牵引正反粒子偶极子运动,观测这个范围以外的光线的光行差分别以各自的速度为准。而同样,不同系统会牵引正反粒子偶极子自转(一个系统的自转可能是另一个系统的公转),在一定范围内牵引正反粒子偶极子运动,观测这个范围以外的光线的自转光行差分别以各自的自转速度为准。
预测与验证:
①光行差与暗物质的牵引范围有关,在不同的牵引范围以外的光都可以通过计算确定光行差的值。随着地球、太阳、银河系的距离变化,地球、太阳、银河系的光行差都会变化。
光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现。科学家在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。
光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应(Photoelectric effect)。光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。按照粒子说,光是由一份一份不连续的光子组成,当某一光子照射到对光灵敏的物质(如硒)上时,它的能量可以被该物质中的某个电子全部吸收。电子吸收光子的能量后,动能立刻增加;如果动能增大到足以克服原子核对它的束缚,就能在十亿分之一秒时间内飞逸出金属表面,成为光电子,形成光电流。单位时间内,入射光子的数量愈大,飞逸出的光电子就愈多,光电流也就愈强,这种由光能变成电能自动放电的现象,就叫光电效应。
赫兹于1887年发现光电效应,光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累到足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,电子的产生都几乎是瞬时的,不超过十的负九次方秒。当时研究“赫兹效应”的各种实验还伴随着“光电疲劳”的现象,让研究变得更加复杂。光电疲劳指的是从干净金属表面观察到的光电效应逐渐衰微的现象。根据霍尔伐克士的研究结果,在这现象里,臭氧扮演了很重要的角色。可是,其它因素,例如氧化、湿度、抛光模式等,都必须纳入考量。
1888至1891年间,史托勒托夫完成了很多关于光电效应的实验与分析。他设计出一套实验装置,特别适合于定量分析光电效应。借助此实验装置,他发现了辐照度与感应光电流的直接比例。另外,史托勒托夫和里吉还共同研究了光电流与气压之间的关系,他们发现气压越低,光电流变越大,直到最优气压为止;低于这最优气压,则气压越低,光电流变越小。
1897年4月30日,约瑟夫·汤姆孙于在大不列颠皇家研究院(Royal Institution of Great Britain)的演讲中表示,通过观察在克鲁克斯管里的阴极射线所造成的萤光辐照度,他发现阴极射线在空气中透射的能力远超一般原子尺寸的粒子。因此,他主张阴极射线是由带负电荷的粒子组成,后来称为电子。此后不久,通过观察阴极射线因电场与磁场作用而产生的偏转,他测得了阴极射线粒子的荷质比。1899年,他用紫外线照射锌金属,又测得发射粒子的荷质比为7.3×10emu/g,与先前实验中测得的阴极射线粒子的数值7.8×10emu/g大致符合。他因此正确推断这两种粒子是同一种粒子,即电子。他还测出这粒子所载有的负电荷。从这两个数据,他成功计算出了电子的质量:大约是氢离子质量的千分之一。电子是当时所知质量最小的粒子。
1900年,菲利普·莱纳德发现紫外线会促使气体发生电离作用。由于这效应广泛发生于好几厘米宽区域的空气,并且制造出很多大颗的正离子与小颗的负离子,这现象很自然地被诠释为光电效应发生于在气体中的固体粒子或液体粒子,汤姆孙就是如此诠释这现象。1902年,莱纳德又发布了几个关于光电效应的重要实验结果。第一,借着变化紫外光源与阴极之间的距离,从阴极发射的光电子数量每单位时间与入射的辐照度成正比。第二,使用不同的物质为阴极材料,每一种物质所发射出的光电子都有其特定的最大动能,光电子的最大动能于光波的光谱组成有关。第三,借着调整阴极与阳极之间的电压差,他观察到,光电子的最大动能与截止电压成正比,与辐照度无关。由于光电子的最大速度与辐照度无关,莱纳德认为,光波并没有给予这些电子任何能量,这些电子本来就已拥有这能量,光波扮演的角色好似触发器,一触即发地选择与释出束缚于原子里的电子,这就是莱纳德著名的“触发假说”(triggering hypothesis)。在那时期,学术界广泛接受触发假说为光电效应的机制。可是,这假说遭遇到一些严峻问题,例如,假若电子本来在原子里就已拥有了逃逸束缚与发射之后的动能,那么,将阴极加热应该会给予更大的动能,但是物理学者做实验并没有测量到任何不同结果。
1905年,爱因斯坦对于光电效应给出另外一种解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。组成光束的每一个量子所拥有的能量等于频率乘以普朗克常数。假若光子的频率大于某极限频率,则这光子拥有足够能量来使得一个电子逃逸,造成光电效应。爱因斯坦的论述解释了为什么光电子的能量只与频率有关,而与辐照度无关。虽然光束的辐照度很微弱,只要频率足够高,必会产生一些高能量光子来促使束缚电子逃逸。尽管光束的辐照度很强劲,假若频率低于极限频率,则仍旧无法给出任何高能量光子来促使束缚电子逃逸。
与声波类似,声的高低与频率有关,频率越高,分子(原子)的运动速度就越快,单个分子(原子)具有的能量就越高,因此当频率小于20的声波,无论有多么强,都不会被听到。但是声音的传播速度与分子的运动快慢无关的,无论频率多少,无论声音的强度是多大,声音的传播速度只与传播声音的介质相关。
根据暗物质正反粒子偶极子理论,光的传播是通过正反粒子偶极子震荡传播的,没有连续性,不能累积,一个正反粒子偶极子激发出一个对应的电子。在光传播的过程中,传播的是能量,不是正反粒子偶极子本身。正反粒子偶极子的能量与频率有关。光的频率如果低于红限,一个正反粒子偶极子的能量无法另一个电子逃脱束缚而成为自由电子,因此无论多强的光也不会产生光电效应。光的强弱是与激发的正反粒子偶极子多少有关,只有达到一定的频率后,才可以产生光电效应。光的频率高于红限后,激发出来的电子数量与被激发的正反粒子偶极子数量有关。
预测与验证:
①所有的波(包括电磁波),都是有粒子振动(震荡)传递的,因此任何波都具有粒子性。任何波的实验都可以验证其粒子性,同时任和波都具有波动性。
根据光子理论,光是由于光子运动产生的粒子流,然而,光子直径是多少?光子为什么没有静止质量?单个光子为什么波动?怎样波动的?光子是怎样振动的采使光成为横波而不是纵波。任何平面相对于光子来说均是高山深涧,原子直径的数量级大约是10-10m,原子核的直径一般为10-15m,整个原子空间几乎都是虚无的。光子入射平面就像往地球和月亮之间仍篮球一样,光子理论无法解释镜面反射。
根据暗物质正反粒子偶极子理论,正反粒子偶极子传递的是电磁波,通过震荡感应传递能量。与波长相比较,平面镜就是平的了,因此发生镜面反射。而波长小于平面镜粒子间距的电磁波将无法发生镜面反射,而是发生透射。同样道理,光从玻璃中以一定角度入射到“真空”中发生全反射,以及光的折射,采用光子理论也无法解释光子如何发生折射且不能入射到“真空”。
预测与验证:
①所有的物质或粒子反弹(或反射),反弹面相对于粒子一定是平的,电子、质子的镜面反射条件是反弹面必须是相对于电子、质子是平面,否则不会发生镜面反射。
光子束交叉时,光子理论无法解释相互碰撞的概率为零?这意味着运动的光子的体积为零,采用光子的相关理论无法解释。
根据暗物质正反粒子偶极子理论,正反粒子偶极子传递的是电磁波,是震荡感应传递能量。而这种能量传递,在不同方向只是不同方向的分量产生变化,因此传播不受影响。
预测与验证:
①任何粒子在相交时都会发生碰撞。
②任何波相交只会叠加,之后的波没有任何影响。
光子从“真空”入射到玻璃中,然后又从玻璃入射到“真空”中,速度先变小后变大。那么光子为什么进入到玻璃中速度降低且匀速;而从玻璃中进入到“真空”中,速度又变大;为何只有在光子通过不同介质交界的时候光速发生变化,而在相同介质中的速度没有变化。在相同介质中,无法令光子加速或减速。光子是一种粒子,如何使光子加速或减速?采用光子的相关理论无法解释。
根据暗物质正反粒子偶极子理论,玻璃中和“真空”中的正反粒子偶极子密度具有显著差别,在玻璃的内部,正反粒子偶极子受到了一定的吸引,密度提高,而相互的约束较大,因此对于光的阻尼也比较大。而在“真空”中,正反粒子偶极子不与可见物质相互作用,受到的约束也较小,因此阻尼较小。光在阻尼大的正反粒子偶极子中传播的速度慢,在阻尼小的正反粒子偶极子中传播的速度快。另外,光速度发生变化只与正反粒子偶极子的密度和正反粒子偶极子之间的作用强度有关,与其它因素没有任何关系。这一点与其它波的传播是一致的,光的传播速度与光的频率和光的强度也是无关的,光的频率高只表示正反粒子偶极子传播的能量高,光的强度高只表示参与的正反粒子偶极子数量多,是不会影响光的传播速度的。
迈克尔逊-莫雷实验、斐索实验、钢盘转动实验和恒星光行差合理论证了具有质量的正反粒子偶极子的运动规律是完全自冾的,与电磁波传播机理是完全相符的。光线引力偏折、雷达回波延迟和引力透镜反应了正反粒子偶极子的密度变化规律,而不是正反粒子偶极子的实际密度。正反粒子偶极子的密度变化会引起电磁波偏折与速度变化。光的系列现象反应光子理论的矛盾,而正反粒子偶极子的电磁波传递理论更具合理性。
预测与验证:
①任何的粒子速度都会变化,而速度变化与受力相关。
②任何波的速度只与介质有关。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-25 13:33
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社