T573029173的个人博客分享 http://blog.sciencenet.cn/u/T573029173

博文

地统计学理论、发展及应用现状研究综述

已有 10291 次阅读 2015-1-28 14:47 |系统分类:科研笔记| 地统计, 经典统计, 克里金

本文是刘爱利老师14年出版《地统计学概论》一书内容摘选,分享下,顺便给刘老师的书打Call!

一、背景

设想有以下情景:

情景1 精准农业中的测土配方施肥都需要从田间采集土壤样本,再监测每个样本的土壤养分含量,但精准施肥过程中还需要知道非采样点的土壤肥力状况。

情景2 人们希望了解除气象台站的气温、降水量情况外,更关心气象台站之间地区的气温和降水量。

情景3 环保工作者希望了解大气中二氧化硫浓度在城市中的连续变化情况,污染物扩散呈现出的空间分布规律。

情景4 地貌学家需要知道地形在空间的连续变化情况,而不只是某几个采样点的高程。

也就是说,在上述情境中,人们不仅仅需要了解有限的空间采样点情况,更关心自然现象在空间的连续变化。因此,此类问题可归结为“如何将离散的空间采样点转化为连续表面”的问题。那么如何做到这一点呢?以土地施肥为例,一种解决方法是加密采样,然而由于人力、物力、财力等客观因素的限制,样本数量不可能无限增多,事实上也不可能做到在无限多的点上采样;另一种方法是通过已有的土壤样本值来估计其他未取样点上的值,从而得到土壤养分在整个土地上的连续分布情况,即空间插值

空间插值的方法很多,主要分为确定性插值和地统计插值两种方法。常用的确定性插值方法包括反距离加权插值法、全局多项式插值法、径向基函数插值法等,该类方法往往直接通过周围观测点的值内插或者通过特定的数学公式来内插,而较少考虑观测点的整体空间分布情况。与此相比,地统计插值法是建立在对观测点的空间自相关分析基础之上,依据自然现象的空间变异规律进行插值的,从而可以得到无偏最优估计量,并且能给出插值的精度。相比于经典概率论和数理统计学,地统计学在空间预测和不确定性分析方面具有明显的优势。目前,地统计学应用领域从最初的地质、采矿领域,已逐步拓展到土壤、气象、农业、生态、环境、公关卫生、社会科学等多个领域,显示出越来越强大的生命力。

二、地统计学概念

地统计学(geostatistics,亦称地质统计学)是应最初在采矿学、地质学等地学领域中的应用和发展而得名。法国著名统计学家G.Matheron首次定义“地统计学”为:“随机函数的形式体系在勘查与估计自然现象中的应用”,后修改为:“地统计学是区域化变量理论在评估矿床上的应用(包括采用的各种方法和技术)”。但是,地统计学发展至今,不仅在地质学,而且在土壤、农业、气象、海洋、生态、环境等各学科领域都得到应用和发展。因此,一些地统计学工作者(侯景儒,郭光裕,1993IssaksSrivastava1989;王仁铎,胡光道,1988Webster1985)将这一概念修订为:“地统计学是以区域化变量理论为基础,以变异函数为主要工具,研究在空间分布上既有随机性又有结构性(空间相关和依赖性)的自然现象的科学”。从定义来看,地统计学主要包含理论基础、研究工具、研究内容三方面。

2.1 理论基础――区域化变量理论

地质学、水文学、气象学、土壤学、生态学中的许多变量都带有空间属性,如海拔、气温、降雨量、土壤含氮量、臭氧浓度、品位等,它们通常随所在空间位置的不同表现出不同的数量特征,这些变量称为区域化变量,其所描述的现象称为区域化现象。区域化变量也称为区域化随机变量,它与普通的随机变量不同,普通随机变量的取值符合某种概率分布,而区域化随机变量则根据其在一个区域内的位置不同而取值,即它是与位置有关的随机函数。区域化变量具有两个最显著、也是最重要的特征,即随机性和结构性。一方面,区域化变量是随机函数,它具有局部的、随机的、异常的特征;另一方面,区域化变量具有结构性,即在空间位置上相邻的两个点具有某种程度的自相关性和依赖性。

2.2 研究工具――协方差函数和变异函数

区域化变量的随机性和结构性需要一种合适的函数和模型来描述,使其两者均能兼顾,这就是协方差函数和变异函数。协方差函数和变异函数是以区域化变量理论为基础建立的地统计学的两个最基本函数,是描述区域化变量的主要工具。

2.3 研究内容――克里金插值法

地统计学的是研究自然现象在空间上呈现的分布规律。克里金(Kriging)插值法,又称空间局部估计法或空间局部插值法,是地统计学的主要内容之一。克里金法是建立在变异函数理论及结构分析基础之上的,实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏最优估计。南非矿产工程师克里金(D. R. Krige)首先将该方法用于寻找金矿,因此G. Matheron就以“克里金”的名字命名了该方法。

地统计学依赖于经典统计学方法,但又不完全等同,其主要区别如表1所示。

1 地统计学与经典统计学的区别

 

地统计学

经典统计学

研究对象

研究区域化变量。变量的取值是与空间位置有关的随机函数

研究纯随机变量,即变量的取值符合某种概率分布

变量观测次数

变量不能重复观测。区域化变量一旦在某一空间位置取得样品后,就不太可能在同一位置再次取到该样品

变量可无限次重复观测或进行大量重复观测试验

样本间的关系

样本之间具有空间相关性和依赖性

要求每次抽样必须独立进行,样本中各个取值之间相互独立

研究内容

研究样本数字特征和区域化变量的空间分布特征

研究样本的数字特征

三、地统计学研究内容

3.1 空间估值

根据空间分布的离散采样点值求出未知点值,或将离散的数据点转化为连续的数据曲面,即空间估值。在地统计学领域,估值方法统称为克里金法,它是一种广义的最小二乘回归算法,其目标是得到无偏最优估计量,即估计误差的数学期望值为0,方差达到最小。

3.2 局部不确定性预测

克里金无偏最优估计量存在两个假设条件:①假设估计误差的频率分布是对称的。但是实际情况中,低值往往会被高估,高值往往会被低估;②克里金误差只与数据构型相关,而与具体数值无关。但实际上被一个大值和小值所包围的待估点,其估计误差往往大于被两个同等规模小值包围时的误差。因此,估值时还应考虑到待估点周围样本点的影响,利用条件概率模型来推断局部不确定性。局部不确定性预测法有参数法(如众高斯方法)和非参数法(如指示克里金法)两种。

3.3 随机模拟

根据随机变量的定义,每个变量可以有多个实现(realization)。只要总体趋势是正确的,每个未知点上的变量估值可以有多种情况,这种方法称为随机模拟。但是,克里金法获得的是唯一的估计结果,它虽然完成了对空间格局的认知,但没能使其再现。然而,随机模拟可以利用各种不同类型数据(如“硬”的采样点测量数据,“软”的各种类型的间接测量数据)生成众多的实现,每一个实现展现同一种空间格局,但表现方式不同。随机模拟方法有高斯序列模拟、LU分解模拟、高斯指示模拟、Pfield模拟、模拟退火方法等。

3.4 多点地统计学

传统地统计学利用变异函数来量化空间格局,但是变异函数只能度量空间上两个点之间的关联,即在二阶平稳或内蕴假设的条件下,空间上任意两点之间的相关性,却难以表征复杂的空间结构和再现复杂目标的几何形态。例如,不同弯曲河道的变异函数在同一方向上可能是十分相似的,因而不能通过变异函数加以区分。对于关联性很强的情况或者研究对象有较为明显的曲线特征时,要想量化其空间格局就需要包含多个空间点。多点地统计学通过多个点的训练图像来取代变异函数,能有效反映目标的空间分布结构。该方法产生于石油领域,目前也主要应用于该领域。

本文主要介绍目前地学领域常用的克里金空间估值和局部不确定性预测中的非参数克里金法(指示克里格法)

四、地统计学起源及发展

4.1 国外地统计学研究

(1) 地统计学的诞生。1951年,南非矿产地质工程师克里金和西舍尔(H. S. Sichel)等在估计南非金矿储量时,提出了克里金法。这种方法是根据样品的空间位置和相关程度的不同,对每个样品品位赋予一定的权重,进行滑动加权平均,来估计中心块段的平均品位。该方法克服了经典统计学将地质变量看成纯随机变量而忽略其空间相关性的不足,降低了估计误差。

随后,法国著名统计学家G. Matheron教授在认真分析了克里金和西舍尔两人工作的基础上,从理论和实践上又进行了系统研究。他通过对10个国家40多个矿床的研究,把早期的零散科研成果理论化和系统化,采用随机函数来描述地质变量的随机性和结构性,提出“区域化变量”的概念。1962年,G. Matheron教授第一次提出“地统计学”概念,并出版了《应用地统计学论》(Traitéde Géostatistique Appliquée),在该专著中第一次阐明了地统计学原理,奠定了地统计学的理论基础。从此,地统计学作为一门新兴的边缘学科诞生了。

(2) 地统计学的发展到成熟。20世纪60~70年代末是地统计学的发展阶段,地统计学理论和方法进一步得到完善和改进,出现了多元、非线性的统计方法,如普通克里金法、泛克里金法、析取克里金法以及条件模拟法等,它们在地质学中得到了广泛应用。20世纪80年代是地统计学的上升阶段,出现了非参数和非稳态地统计学,非线性地统计学得到发展。

197519831988年召开的三次国际地统计学大会和国际地统计学协会(IGEOSTA)的成立,标志着地统计学已经开始发展成熟(郭怀成等,2008;王政权,1999;侯景儒,郭光裕,1993)20世纪90年代是地统计学的进一步成熟阶段,三维地统计学和时空地统计学得以发展,大量地统计学相关软件问世2000年至今是地统计学创新性的二次发展阶段,不确定性地统计学和新型的地统计学方法得到发展,应用领域进一步得到拓展(郭怀成等,2008)

(3) 地统计学理论研究现状和趋势。多年的发展使地统计学理论出现了两大学派:①G. Matheron为首的“枫丹白露地统计学派”,开展以正态假设为基础的克里金法研究,提出了多元地统计学的思想,形成了包括简单克里金法、普通克里金法、泛克里金法、析取克里金法等在内的一套理论方法体系。在克里金法计算中,需要利用实际样品数据求出区域化变量理论模型的若干参数,因而称为“参数地统计学”;②A. G. Journel为首的“斯坦福地统计学派”,发展无需对数据分布作任何假设的指示克里金法、概率克里金法和快速条件模拟等一套方法,同时考虑如何使用“软”数据问题,称为“非参数地统计学”。

我国学者郭怀成等(2008)从文献计量学和方法学演变过程的角度,将地统计学的内容演变概括为五个方面:稳态向非稳态演变;②单变量向多变量(含二次信息)演变;③参数与非参数方法相互补充;④线性向非线性方法演变;⑤空间静态向时空动态演变。

(4) 国外地统计学理论研究成果。大批的地统计学研究理论和应用专著(2)在地统计学发展过程中层出不穷,并被实践者们广泛引用。

2 地统计学研究成果整理

书名

类型

1. Geostatistical Ore Reserve Estimation  (David1977)

2. Mining Geostatistics (JournelHuijbregts1978)

3. Spatial Statistics (Ripley1981)

4. An Introduction to Applied Geostatistics (IssaksSrivastava1989)

5. Statistics for Spatial Data (Cressie1993)

6. Practical Geostatistics (ClarkWilliam2000)

其中Mining Geostatistics影响较大,是20世纪80 - 90年代地统计学理论和应用研究的经典参考书;

介绍地统计学的基本理论与方法的著作

1. Stochastic Simulation (Ripley1987)

2. GeostatisticsModeling spatial uncertainty (ChilésPierre1999)

3. Geostatistical Simulation (Lantuéjoul2002)等;

关于地统计学理论的深化和各种算法的研究的著作

1. Geostatistics for Natural Resources Evaluation (Goovaerts1997)

2. Geostatistics and Petroleum Geology (Hohn1999)

3. Geostatistics for Environmental Scientists (WebsterbMargaret2000)

4. Practical Geostatistics (ClarkWilliam2000)

5. Geostatistics with Applications in Earth Sciences (Sarma2002)

各学科领域中地统计学应用的理论指导和实例研究

4.2 国内地统计学研究

地统计学在我国的发展起源于20世纪70年代。1977年,美国福禄尔采矿金属有限公司(Flour Mining & Meta Incorporation)H. M. Parker博士随美中贸易全国委员会矿业代表团来华访问,将地统计学的基本概念和内容系统地介绍给我国的数学地质及勘探、矿山设计人员。随后侯景儒、王仁铎、孙洪泉等深化了地统计学在我国地质、矿业领域的应用。

1982年侯景儒等首先将JournelHuijbregtsMining Geostatistics译成中文(译著名称为《矿业地质统计学》)

1987年王仁铎和胡光道出版了《线性地质统计学》一书作为高等学校教材

1989年孙惠文等翻译出版了David的《矿产储量的地统计学评价》

1993年侯景儒和郭光裕出版了《矿床统计预测及地质统计学的理论和应用》

1999年王政权出版了《地统计学及其在生态学中的应用》

2005年张仁铎出版了《空间变异理论及应用》

2014年刘爱利等出版了《地统计学概论》。

上述专著及译著的出版为地统计学在我国的理论和应用研究打下坚实基础。

五、地统计学软件介绍

随着计算机技术的发展,目前国内外已有一些共用领域地统计软件,如GS+ArcGIS地统计模块、SurferGeo-EASGEOPACKGeostatistical ToolboxGISLIB等,如表3(郭怀成等,2008)所示。

3 地统计软件特性

软件

年份

第一开发者

统计分析

变异函数

克里金空间估计

随机模拟

2D空间分析

3D空间分析

开源

免费

单变量

多变量

非参数

Cosim

1986

G. Ruskauff

-

-

-

-

-

-

-

-

Geo-EAS

1989

E.  Englund

-

-

-

-

-

-

GCOSIM3D

1989

Gómez-Hernández

-

-

-

-

-

-

-

-

ISIM3D

1990

Gómer-Hernández

-

-

-

-

-

-

-

-

GEOPACK

1990

S.R.Yates

-

-

-

-

-

-

Geostatistical

Toolbox 1.30

1990

Froidevaux

-

-

-

-

-

-

GSLIB

1992

C.V.Deutsch

null

Agromet 1.0

1996

P.Bogacert

-

-

-

-

-

-

-

-

-

UNCERT1.3

1997

W.L.Wingle

-

-

-

-

WinGslib

1999

C.V.Deutsch

-

-

-

-

-

-

-

-

-

Varowin-2.21

1999

Y.Pannatier

-

-

-

-

-

-

-

SAGE2001

2001

 

-

-

-

-

-

-

FACTOR-2D

2001

Pardo-Lguzquiza

-

因子

Cokring

-

-

-

-

-

Explostat

2002

L.Hazelhoff

-

-

-

-

E{Z}-Kriging

2003

D.J.J.Walvoort

-

-

-

-

-

 

-

-

BMELIB-2.0b

 

M.L.Sette

-

-

-

-

SADA

2004

R.Stewart

-

null

null

-

-

GStat-2.4.5

2005

E.J.Pebesma

-

-

SAGA-GIS-2.0

2005

O.Conrad

-

null

-

-

-

-

-

Isatis

2006

Geovariances

-

-

-

S-GeMS-1.4

2006

N.H.Remy

GS+v7

2006

Gamma  Design

-

-

Surfer 8.06

2006

Golden  Software

-

-

-

-

-

-

-

ArcGIS 10

2010

ESRI

高斯地统计

-

-

(1) GS+(Geostatistics forthe Environmental Sciences)由美国Gamma Design软件公司制作,是目前业界常用的专业地统计分析软件。GS+内容全面,提供了几乎所有的地统计分析功能,包括三维条件下数据的基本统计分析、分形分析、协方差分析、变异函数分析以及普通克里金法、协同克里金法、条件模拟等地统计学常用的空间分析与估值方法。与其他地统计软件相比,GS+最大的亮点是能够根据输入的数据,自动拟合实验变异函数(包括高斯、椭圆和指数模型)。同时,该软件还具有强大的图标输出功能,可以将计算结果直接绘制输出,并且可以导入导出SurferArcGIS Grid等常用的网格文件。

(2) GISLIB(GeostatisticalSoftware Library)由美国斯坦福大学应用地球科学系C.V. DeutschA.G. Journel 开发的地统计程序工具箱,能胜任大部分地统计学计算,包括变异函数拟合、克里金估计、随机模拟和空间制图。

(3) ArcGIS地统计分析模块。 ArcGIS中的一个扩展模块,而非一个独立的软件界。此模块的优势是将地统计学功能融入GIS软件中可充分利用GIS强大的空间分析功能,做到GIS和地统计的无缝集成。但此模块目前仅继承了部分地统计学常用功能,如探索性空间数据分析、数据插值分析(确定性插值方法和地统计插值方法)和插值结果检验、高斯地统计模拟。

(4) Sufer是美国的一款以画三维图(等高线,image map, 3dsurface)的软件。该软件具有的强大插值功能和绘制图件能力,使它成为用来处理XYZ数据的首选软件,是地质工作者必备的专业成图软件。

我国学者还根据研究的需要自行开发了其他应用软件,也取得了很好的效果。例如,①北京科技大学侯景儒教授领导研制了地统计学方法研究程序集,并应用于地质勘探中,该程序集包括:二维地统计学系统,主要有普通克里金法、对数正态克里金法及泛克里金法等;二维非参数地统计学系统,主要有指示克里格法。二维多远地统计学系统;三维地统计学系统,包括三维普通克里金法及三维协同克里金法。②中国地质大学(武汉)王仁铎、胡光道教授领导编制了一些地统计学软件包,包括常用克里金插值和条件模拟。③浙江大学唐启义研发的DPS数据处理系统,包括由地统计模块,可完成变异函数估计、分析、克里金插值,IDW插值等。④由中国林业科学研究院资源信息研究所开发的统计之林(ForSat)包含了遥感数据的统计分析,在区域遥感分析中得到应用。⑤在一些地质矿业软件中,如原武警黄金指挥部黄金地质研究所的CGES(Chinese Geology and Exploration System) 系统、李裕伟教授领导研制的KPX固体矿产勘查评价自动化系统,均含有地统计学的相关内容。

六、地统计学应用领域

凡要研究空间分布数据的结构性和随机性空间相关性和依赖性空间格局与变异,并对这些数据进行无偏最优内插估计或模拟数据的离散性、波动性分析,均可考虑采用地统计学的理论与方法(侯景儒,郭光裕,1993)

6.1 地统计学在地质学中的应用

地质、采矿领域是地统计学应用的传统领域,地统计学诞生于该领域,也在该领域中得到发展并成型,积累了较多的资料和经验,目前也是地统计学应用最成熟的领域。在地质学领域中,地统计学属于数学地质的一个分支,其应用主要集中在以下三个方面。

(1) 利用地统计学进行矿产资源储量计算及平均品位估计。地统计学可从地质、采矿的实际出发,根据矿床地质变量的特点,最大限度地利用勘探工程所提供的各种信息,既可以进行矿产资源储量的整体估计,又可以进行储量的局部估计,并且能在开采前定量地给出储量的估计精度,而且与计算机相结合,可实现储量计算的自动化(王仁铎,胡光道,1988;候景儒,黄竞先,1982)

(2) 利用地统计学进行矿产资源预测及找矿勘探。地统计学在此方面的应用表现在:应用泛克里金法、对数正态克里金法等处理各种地质数据;优选勘探基本网度;合理布置勘探工程;煤田勘探控制度评价;利用估计方差进行储量分级、矿床勘探类型的定量分析;找矿有利地段及矿床存储位置的确定;利用变异函数及其参数研究地质变量空间分布规律;建立煤矿床的三维地质模型等(王仁铎,胡光道,1988)

(3) 利用地统计进行石油勘探开发。近年来,地统计学在石油勘探开发中的应用日益广泛、深入,效果也越来越明显,初步形成了石油地质统计学这一门新兴学科。其主要内容包括:①储层预测。估计地层的埋深、层厚、孔隙度、渗透率和含油饱和度等地质和地球物理参数的空间分布,绘制各种地质图件。②利用地统计学的变异函数研究储层的非均质性及各向异性。③数据整合。整合地震、测井、钻井和露头等各种信息并进行建模。④随机模拟和油藏数值模拟相结合,预测油藏动态特征,为制定和调整开发方案、提高采收率提供依据(李黎,王永刚,2006)

6.2 地统计学在土壤中的应用

土壤等许多自然现象在空间上是连续变化的,空间上的相近的点比相距较远的点在理化性质等方面具有更大的相似性,也就是说,他们在统计学意义上相互依赖,这与区域化变量和地统计学应用的前提是一致的。目前,利用地统计学方法研究土壤特性的空间变异已成为土壤科学研究的热点之一,其应用主要集中在以下四个方面。

(1) 地统计学在土壤物理性质空间变异中的应用。地统计学在此方面的研究开始与20世纪六七十年代,早期主要集中于土壤颜色、土粒、土壤水分、土壤水力传导度、饱和水压、孔径等土壤物理性质的空间变异研究(Greenholtz, et al., 1988McBratney,Webster, 1981Burgress1980)20世纪80年代初期,国内学者也逐步开始利用地统计学方法先后在土壤的物理参数(如颗粒组成、团聚体大小、容重等)、状态参数(如水分含量、水力传导度) 等方面进行了探索(龚元石等,1988;梁春详,姚贤良,1993,;吕军,俞劲炎,1990)

(2) 地统计学在土壤化学性质空间变异中的应用。对于利用地统计学对土壤化学性质进行空间变异性研究,国内外研究者已经做了大量工作。早期主要是针对氮、磷、钾、钙、镁、土壤pH土壤养分的空间相关性研究(Webster, Oliver, 1989; Robertson,1987;Webster, 1985; Yost, et al., 1982)。近年来国内学者从不同尺度、不同景观、不同时间、以及不同环境因素条件,对土壤养分的空间变异性进行了大量的探索,利用变异函数及其模型和克里金插值方法,对土壤化学性状的空间属性进行了描述和归类,同时为土壤养分管理、土壤环境背景制图等提供了必要数据和方法(郭旭东等,2000;王其兵等1998)

(3) 地统计学方法在土壤学试验设计和采样方法的应用。由于土壤本身的空间变异性,在进行野外随机区组设计或者随机确定采样点对的过程中,可能使取得的实验数据根本不具有统计意义,而应用地统计学方法可以有效解决这个问题。分析土壤特性的空间变异规律,可有效知道土壤采样数据、样点分布、采样密度及采样方法的确定(Fagrouda,Van Meirvenne,2002; 齐峰,王学军,2000;李子忠,龚元石,2000;许红卫,王珂,2000)

(4) 地统计学在土壤质量管理方面的应用。土壤质量是全球生物系统赖以持续发展的关键因素之一。土壤质量管理中,未取样点的土壤特性是否超过某一阈限,是制定管理规范、确定经营策略等工作的重要参考指标。地统计学提供了利用已知取样点的数据去估测未采样点位土壤特性指标是否超过某一阈限的方法。近年来,地统计学在土壤质量管理上的应用主要集中在土壤养分管理和土壤污染研究方面(杨俐苹,2000Schepersetal., 2000; 王学军等, 1997陶澍,邓宝山,1993 Stein, 1993; Zirschky, 1985)

6.3 地统计学在生态学中的应用

生态学是研究生物之间及生物与非生物环境之间相互关系的学科,不同物种不同时间、不同地点的分布是该学科重要的研究内容之一。在生物体分布和环境因素之间的空间变化分析中,空间依赖性分析尤其重要。但是传统的统计分析方法认为样本间是相对独立的,而忽略了这个问题。

鉴于地统计学的特点及在土壤空间变异性和格局研究中的优越性,20世纪80年代国外有生态学研究者将其引入生态学领域。例如Philips(1985)采用地统计学方法研究了芦苇对海岸侵蚀的影响;Robertson(1987)介绍了地统计学在生态学中的两个实例;Kemp(1989)应用克里金法制作了蝗虫密度等级图;SchotzkoO’Keeffe(1989)则研究了草盲蝽的空间变异性,并制作了其密度分布图;Rossi(1992)用大量的篇幅和实例系统地介绍了地统计学工具在生态学中的应用;1993年美国第78届生态学年会以“地统计学与生态学”为主题,探讨了地统计学在生态学中的实际应用及潜力。

我国将地统计学应用到生态学研究的时间较晚,但随着对地统计学认识的加深,自20世纪90年代开始已有越来越多的研究者将地统计学应用到生态学领域,例如,李友常等(1997)研究了杨树光肩星天牛种群空间格局;余昊等(2006)分析了春尺蠖成虫、卵块和1龄幼虫的空间结构,并制作了种群分布图;赵成章等(2011)研究了黑河上游祁连山地天然草地1~5龄蝗蝻混合种群在大尺度多海拔区域中的空间格局变异性。

目前,地统计学已被广泛应用到昆虫生态学、水生态学、淡水生态学、景观生态学和植被生态学等多个方面。地统计学为生态学提供了一个非常有效地分析和解释空间数据的方法,具体如下:

(1)生态学变量空间变异性的定量描述和解释。通过分析空间格局的尺度、几何形状、变异方向等信息,将空间格局与生态学过程联系起来,有助于更好地理解研究对象的空间格局特征,给出合理的生态学解释。

(2)生物特征的估计。以采样点数据反映的空间结构特征为基础,估计未采样点的密度、数量等生物特征,以获取研究对象的空间分布格局。

(3)生态学研究对象的时空变化规律分析、不同相关研究对象的时空动态及耦合关系分析。

地统计学还可与地理信息系统、遥感、全球定位系统的3S技术(GIS, RS, GPS)结合起来以快速准确地获取生物环境信息,并对信息进行有效的管理和分析使用。

6.4 地统计学在环境学中的应用

环境是一个时空连续体,利用经典统计分析方法,难以全面描述具有空间相关性的环境样本特征,不利于进一步考察环境变量的空间变异特征以及不同环境因子间的空间相关关系。地统计学在环境科学研究中的应用主要表现在以下三个方面。

(1) 土壤环境研究。土壤重金属污染是目前土壤环境治理的重要内容,也是国内外研究的热点问题。地统计学中的变异函数和克里金插值技术是进行重金属空间结构分析、模拟和估值的主要工具,通过描述和模拟污染物的空间分布特征以及估算未采样点的取值,揭示出污染物在空间上的分布迁移趋势。此外,结合现有的污染背景资料,还可以识别出各种可能的污染源,进行溯源分析(杨秀虹,李适宇,2005)

(2) 水环境研究。地统计学在地下水水位预测和污染物迁移扩散参数估计上的应用早从20世纪70年代就已开始。有研究者利用地统计学优化环境监测网点的位置和数目,分析预测水环境污染物浓度、研究水质参数的估算及变异性(吕连宏等,2006)

(3) 大气等其它环境相关领域研究。BayraktarTuralioglu(2005)为了使发展中国家以最少的采样获得最佳的评价结果,减少采样费用,选择了利用地统计学优化大气质量评估中采样位置的方法。此外,地统计学在大气污染物分布、声环境评价研究中也取得了很好的效果(李仰征,马建华,2008;孟健,马小明,2002)

6.5 地统计学在气象学中的应用

在数值天气预报和日常气象分析中,经常需要将不规则的站点资料插值到规则的格网,如资料同化中的客观分析和站点资料的等值线分析等。目前,气象中的站点资料分析方法常用以距离函数为权重的插值方法,如反距离加权插值法和逐步订正法(常文渊等,2004)随着地统计学方法的兴起,克里金法已经逐步应用于气象学领域。

七、地统计学的发展趋势

当前,地统计学的理论体系不断完善,应用水平不断提高,同时,与多学科的相互渗透也不断促进了相关学科的发展。地统计学的应用已从传统的地质、采矿领域及土壤、生态、环境气象学领域,向其他空间相关领域中崭露头角。此外,地统计学在公关卫生、社会科学等领域也有所涉足,显示出越来越强大的生命力。地统计学的发展趋势表现在以下四个方面(郭怀成等,2008;孙英君等,2004;肖斌等,2000;侯景儒,郭光裕,1993)

(1) 注重学科交叉,发展旧理论,探索新方法。例如,寻求估计变异函数的替代方法,发展不确定性地统计学;研究机理模型与地统计学的耦合,发展基于地统计学的不确定性决策;加强地统计学与专家系统、地理信息系统、神经网络及人工智能之间的结合。

(2) 加强时-空地统计学的研究,实现真正的动态估值。

(3) 地统计学软件的进一步发展。着重加强软件可视化研究,提高图形输出质量,完善地统计学软件包功能。

(4) 注重实际应用,拓宽应用领域。健康与公共卫生、社会科学等是地统计学新的研究领域。



http://blog.sciencenet.cn/blog-1813407-863505.html

上一篇:如何“装”作一个优秀的研究生?
下一篇:我国污染场地修复领域的存在问题与对策建议

5 张学文 毛宁波 李庆祥 蔡庆华 张全

该博文允许注册用户评论 请点击登录 评论 (6 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-8-5 01:58

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部