||
一项关于牛顿力学基本原理和热力学第二定律的判决实验设计
李维纲
(滨江学校,安康725011)
摘要:本文介绍了一个类似于麦克斯韦尔妖的实验设计方案。但是,与“麦妖”方案比较,它不需要麦妖那样的智慧就可以工作。而且,该方案不是一个仅仅可以在思想中进行的“理想实验”方案;而是具有现实可实施性的实验设计方案!它完全符合牛顿力学基本原理的设计方案,却具有可以突破热力学第二定律限制,从单一热源持续提供宏观动能的第二类永动机特征。揭示出在牛顿力学基本原理和热力学第二定律之间,是存在逻辑矛盾的.
关键词:麦克斯韦尔妖,牛顿力学基本原理,热力学第二定律, 逻辑矛盾
引 言
自从玻尔兹曼在牛顿力学和热力学之间搭建起一座桥梁,将热力学还原为牛顿力学之后,上百年来,人们已经习惯认为:牛顿力学基本原理和热力学第二定律之间是逻辑自洽的。
但是,真的在牛顿力学基本原理和热力学第二定律之间,总能保持逻辑自洽吗?
对此,麦克斯韦尔是持有怀疑态度的。为了论述两者之间可能存在的逻辑矛盾,麦克斯韦尔设计了——“麦克斯韦尔妖”——这样一个著名的理想实验。但是,这个理想实验中的“司门小妖”需要根据分子运动的信息才能工作,获取信息需要额外的能量消耗,以现代观点看,麦克斯韦尔设计的理想实验,并不能构成对热力学第二定律的严峻挑战。不能作为在牛顿力学基本原理和热力学第二定律之间存在逻辑矛盾的证据。
最近作者研究发现:有一项实验设计方案,不需要“司门小妖”那样的智慧,就可以导出,在牛顿力学基本原理和热力学第二定律之间存在逻辑矛盾的结论。该实验设计方案足以构成一项关于——“牛顿力学基本原理正确,还是热力学第二定律正确?”——的判决实验,具有极其重要的理论和实际意义。
在这个设计基础上的理论思辨,迫使我们必须在——“牛顿力学基本原理正确,还是热力学第二定律正确?”——这个问题面前做出明确的选择。
如果该实验的判决结果可以证明,牛顿力学基本原理的真理性高于热力学第二定律。那么,该设计方案本身就构成了人类期盼已久的第一个成功的第二类永动机设计方案,具有难以估量的巨大实用意义;如果该实验的判决结果可以证明,热力学第二定律的真理性高于牛顿力学基本原理。那么,势必在物理学领域引发一场巨大的观念变革。
无论最终实验结果如何,对这个实验设计的理论讨论和实施细节的研究都是必需大力推进的。
1 设计方案简介
众所周知——
1.将钢珠自U型钢管一端射入,可从另一端射出,忽略摩擦损耗,钢珠动能不减;
2.将光子射入光纤一端,光子可以从另一端射出,频率不变(能量不减);
3.如上类比,如果存在一种狭管,将分子自狭管一端射入,分子可以从狭管另一端射出(动能不减,理论上,仅需要狭管接近理想刚体,其内壁对分子的约束力不做功,就可以);
那么,当狭管足够狭窄(如碳纳米管),仅容大约一个流体分子通过时,如附图1所示的装置,
附图1
在初始状态,虽然流体分子1,理论上,有相同的几率从每一狭管2两端的任意一端进入狭管,从另一端出来;系统无法产生宏观动能。
但是,如果给图示系统施加一个初始启动过程,则图示系统将可以从单一热源,源源不断地产生宏观动能(射流);启动过程结束后,进入工作状态,工作状态可以自持。
启动过程可以是:真空机从汇流管喷口4抽吸流体分子进入图中主仓室,直到形成宏观射流。
由于我们可以选择单原子惰性气体氩气分子作为“工质”;选择刚性可以和金刚石相比拟、清华大学已经可以制作长达半米的碳纳米管作为狭管。使该实验设计,不是一个像“麦克斯韦尔妖”那样仅可以思想中进行的“理想实验”,而是实际可以进行的一项关于——“牛顿力学基本原理正确,还是热力学第二定律正确?”——的判决实验设计。
2 基于牛顿力学原理“射流”可自持的论证
2.1关于“偏撞离轴定理”的证明及其意义
定义1:任意一个分子A在碰撞之前质心漂移运动路线称为“(分子A的)轴线”,分子A沿轴线前进方向称为“(分子A的)轴线方向”;
定义2:分子A沿轴线和另一分子B相撞,且相撞时刻两个分子的质心连线在分子A的轴线上时,称相对分子A,受到了“正撞”;
定义3:相对分子A,正撞以外受到的所有碰撞,称为“偏撞”。
偏撞离轴定理的表述:任一分子A,受到另一分子B的偏撞后,A、B两分子都会发生偏离分子A轴线的运动。
定理的证明如下——
∵ 偏撞时刻,两分子质心连线不在A轴线上;
∴ 偏撞时刻,两个分子相互作用的冲量Ft在A轴线以外方向的分量不为零;
∴ 偏撞发生后,A、B两个分子都会发生偏离分子A轴线的运动。
证毕。
偏撞离轴定理的意义:
因为偏撞的几率远大于正撞的几率,冲出狭管的分子遇到的碰撞几近全部为偏撞,偏撞的结果使得偏撞的两个分子都会偏离从狭管冲出分子的轴线,都没有机会逆向冲入狭管;因此,在启动之后,分子从狭管两端进入狭管的几率必定可以锁定在不平衡状态。
2.2汇流管具有锁定不平衡的重大意义
如附图2所示,狭管出口设置在“汇流管”内部,狭管出口方向和汇流管出口方向尽量保持着一致性。因此,当汇流管长径比大到一定程度后,可以做到——
附图2
1. 汇流管出口的横截面面积远小于其中所有狭管出口横截面面积之和;
2. 每个从狭管冲出、进入汇流管空间的分子,所遇到的碰撞,绝大多数情况都发生在刚刚冲出狭管、进入汇流管的分子之间;
3. 第2点条件下的碰撞,由于碰撞双方都具有指向汇流管出口方向的动量分量,所以,如附图3所示,这样的碰撞,绝对不会导致分子逆向冲入狭管;
附图3
4. 当第3点成立的条件下,汇流管内容许有很高的气体密度,同时又不会形成遏阻“自动流”的负向气压差;
5. 在以上(1~4)条件下,冲出汇流管的射流是定向、且高密度的分子流,分子逆向冲入汇流管这件事本身,就构成违背热力学第二定律的事件(微观来说,大量偏撞,使分子逆向进入汇流管的几率降低到几乎为零)。
6. 即,系统一旦形成“自动流”,该自动流可以永动。
7. 特别有趣的是:如果在汇流管出口附近设置叶轮,使射流对叶轮做功,那么,做功后,分子平均动能降低,相对集中在汇流管出口处附近,使得,即使有少量从汇流管出口逆向进入狭管的分子,其负方向动能也比较小;而且,在原始假定为单一热源的箱体内部,随着系统工作,可以在汇流管出口附近,形成一个相对的低温区域。使得,理论上,普通热机也具备了初始不具备的工作条件。
8. 当系统射流对叶轮做功,叶轮带动发电机发电,能量输出到图示系统以外的情况发生后,系统温度降低,可以从环境中吸收热量。
意味着:图示那样一个按照牛顿力学基本原理工作的系统,由于在狭管、汇流管发挥特殊的“自组织”作用,系统可以不断地从环境中吸收热量,并将这种分子无规则运动具有的能量源源不断地转化为宏观动能(构成第二类永动机)。显然,这直接违背了热力学第二定律。
3 结 论
该实验设计方案揭示,在牛顿力学基本原理和热力学第二定律之间,确实存在着逻辑矛盾。
参考文献
[1]李政道. 《统计力学》[J].上海:上海科学技术出版社,2006.11,
[2]林宗涵.《热力学与统计物理学》[J].北京北京大学出版社,2007,
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-18 22:15
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社