# The kernel of "P vs NP Problem": Axiom of power set!

The kernel of "P vs NP Problem":

Axiom of power set!

It can be found that a Non-Deterministic Turing Machine can generate a power set of its corresponding Deterministic Turing Machine in a linear time.

If "Axiom of power set" is accepted, then P ≠ NP for a Deterministic Turing Machine.

References:

[1] ZFC, Zermelo–Fraenkel set theory with the axiom of choice

http://www.encyclopediaofmath.org/index.php/ZFC

[2] Axiomatic set theory

http://www.encyclopediaofmath.org/index.php/Axiomatic_set_theory

[3] Axiom of the Power Set

http://mathworld.wolfram.com/AxiomofthePowerSet.html

[4] P vs NP Problem - Clay Mathematics Institute

http://www.claymath.org/millenium-problems/p-vs-np-problem

[5] A non-canonical example to support P is not equal to NP, Transactions of Tianjin University, December 2011, Volume 17, Issue 6, pp 446-449

2012年 William I. Gasarch 对“P对NP的专家观点调查汇总

http://www.cs.umd.edu/~gasarch/papers/poll2012.pdf

[1] 2011-09-15，A FULL PROOF to the P versus NP problem

http://blog.sciencenet.cn/blog-107667-486692.html

[2] 2012-03-23，[请教] P对NP：请郝克刚教授等专家指教（一）

http://blog.sciencenet.cn/blog-107667-550859.html

[3] 2011-08-21，俗解Chaitin定理

http://blog.sciencenet.cn/blog-107667-892400.html

## 全部精选博文导读

GMT+8, 2019-10-19 01:12