|
Normally_distributed_PSEUDO_random_number_270 = [
1.75284098166886
-0.241131563615822
0.0370971636332033
-0.865600484774744
0.497720278745478
0.923307183759727
1.12528063020717
0.352423054515431
-1.05314725647594
0.476080266626109
2.10340917800263
0.194760109074317
1.90864906892831
-0.981013882744710
0.595100333282637
0.343148763607131
-0.259680145432423
-0.605920339342321
0.584280327222952
-1.25512070292338
1.86969704711345
-0.296777309065627
-0.0741943272664066
0.411160230268003
1.06757393122218
1.83074502529858
0.0556457454498049
0.937733858505973
1.09642728071468
1.19020066656527
1.05314725647594
-1.02429390698345
0.432800242387372
0.380245927240334
-0.361697345423732
0.670840375700427
0.120565781807911
-0.822320460536007
-0.768220430237585
0.443620248447056
1.71388895985399
0.241131563615822
0.530180296924531
-1.08200060596843
0.508540284805162
-0.476080266626109
-0.120565781807911
0.486900272685794
-0.616740345402005
0.995440557490956
-1.38496077563959
0.0278228727249025
-0.836747135282253
-1.03872058172969
0.278228727249025
-0.894453834267236
-2.10340917800263
-1.44988081199770
-0.714120399939164
-2.59680145432423
-0.497720278745478
1.67493693803913
-0.166937236349415
-0.923307183759727
-0.111291490899610
1.40660078775896
-0.400340224208319
1.03872058172969
0.204034399982618
0.0463714545415042
-0.176211527257716
-1.32004073928148
-0.333874472698830
-1.47152082411706
-0.129840072716212
-0.670840375700427
0.822320460536007
-0.432800242387372
-1.71388895985399
1.29840072716212
2.59680145432423
0.865600484774744
0.268954436340724
0.315325890882228
-0.735760412058532
1.79179300348372
1.02429390698345
0.807893785789761
-0.508540284805162
-0.194760109074317
0.692480387819795
0.333874472698830
0.0741943272664066
1.11085395546092
-0.966587207998464
2.46696138160802
0.768220430237585
-0.595100333282637
0.541000302984215
-0.584280327222952
0.894453834267236
-0.692480387819795
-1.75284098166886
-0.00927429090830084
-1.13970730495341
-1.00986723223720
-0.352423054515431
-0.148388654532813
-1.51480084835580
0.166937236349415
-0.486900272685794
-1.83074502529858
0.296777309065627
-0.724940405998848
-0.952160533252219
-0.102017199991309
-2.18131322163235
-1.86969704711345
-1.67493693803913
2.92140163611476
-1.09642728071468
-1.27676071504275
1.42824079987833
-0.807893785789761
-0.380245927240334
0.306051599973927
-0.530180296924531
1.49316083623643
-0.908880509013481
-2.02550513437290
0.454440254506741
-1.29840072716212
0.757400424177901
1.15413397969966
0.324600181790529
2.18131322163235
0.660020369640742
-0.681660381760111
-0.287503018157326
0.627560351461689
-0.573460321163268
0.370971636332033
0.703300393879480
-0.0927429090830083
-0.541000302984215
-0.268954436340724
0.185485818166017
0.102017199991309
-1.34168075140085
-0.638380357521374
0.638380357521374
0.952160533252219
-1.15413397969966
0.724940405998848
0.981013882744710
-1.11085395546092
-1.12528063020717
-0.0185485818166017
0.966587207998464
-0.157662945441114
-0.0463714545415042
0.735760412058532
0.111291490899610
-0.649200363581058
0.222582981799220
-0.746580418118217
0.573460321163268
0.551820309043899
0.836747135282253
-0.703300393879480
-0.278228727249025
1.27676071504275
-0.793467111043515
-1.21184067868464
1.44988081199770
1.21184067868464
1.36332076352022
1.38496077563959
1.47152082411706
-1.23348069080401
-2.46696138160802
-1.90864906892831
-1.36332076352022
-2.92140163611476
-2.25921726526208
0.231857272707521
-0.627560351461689
-0.454440254506741
-1.42824079987833
-0.0370971636332033
-0.315325890882228
-0.0556457454498049
-0.231857272707521
-0.0278228727249025
1.34168075140085
1.13970730495341
1.53644086047517
0.0185485818166017
-0.204034399982618
-0.222582981799220
-0.551820309043899
2.25921726526208
-0.880027159520990
-0.370971636332033
0.250405854524122
0.616740345402005
-0.306051599973927
-0.0649200363581058
-0.185485818166017
-0.421980236327688
0.176211527257716
-0.562640315103584
0.562640315103584
-1.49316083623643
-0.250405854524122
0.605920339342321
-0.519360290864846
1.32004073928148
-0.995440557490956
0.00927429090830084
0.148388654532813
-1.40660078775896
0.213308690890919
0.259680145432423
0.287503018157326
-0.937733858505973
-0.443620248447056
0.519360290864846
-0.324600181790529
-0.660020369640742
-0.213308690890919
0.421980236327688
0.851173810028498
-1.63598491622427
0.714120399939164
1.00986723223720
1.51480084835580
0.0834686181747075
0.465260260566425
1.23348069080401
0.649200363581058
0.0927429090830083
-0.851173810028498
-0.343148763607131
0.361697345423732
-0.757400424177901
-0.0834686181747075
0.880027159520990
1.63598491622427
1.08200060596843
0.139114363624512
1.59703289440940
0.793467111043515
0.157662945441114
0.746580418118217
0.681660381760111
0.908880509013481
-1.19020066656527
-0.411160230268003
1.25512070292338
-1.59703289440940
0.400340224208319
-0.139114363624512
0.129840072716212
2.02550513437290
-1.53644086047517
-1.06757393122218
-1.79179300348372
0.0649200363581058
-0.465260260566425
];
请教:
在 Kendall Stuart 最优分组条件下,这组正态分布随机数的“卡方检验值, Chi-Square Test, Chi-Square Goodness of Fit Test”是多少?
This group of normally distributed random numbers seems to be better than the "true random numbers" generated by "physical devices". What is the Chi-Square Goodness of Fit Test of them under the Kendall Stuart's optimal grouping?
哪里有比上面的伪随机数更好的正态分布随机数?
相关链接:
[1] 2021-01-29,[擂台] 地球上最好的100个和270个正态分布随机数
http://blog.sciencenet.cn/blog-107667-1269582.html
[2] 2021-01-29,100个正态分布伪随机数 100 normally distributed PSEUDO random numbers
http://blog.sciencenet.cn/blog-107667-1269583.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-22 15:10
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社